All Programmable System on Chip Security

Presented by Amit Singh

Outline

- Introduction
- Salient features of Zynq-7000 & SmartFusion2
- Features:
 - Crypto implementations & key loading
 - Storage & security during operations
 - Product lifecycle
- Key similarities & differences
- Summary

Introduction

What is system on chip?
Why are they important?
Goal of this project

Source "PSOC" url: http://www.directindustry.com/prod/cypress-semiconductor/product-34220-200113.html

Zynq-7000 by Xilinx

- 2 parts:
 - Processing system (PS)
 - Programmable logic (PL)
 - Memory storage
 - Boot ROM
 - On-chip memory
 - Configuration memory
 - Other memories
- Cryptographic block
 - AES decryptor, HMAC (embedded in hardware)
 - RSA (embedded in software)

Source: xapp1175_zynq_secure_boot by Lester Sanders in 2015

SmartFusion2 by Microsemi

- Similar to Zynq-7000
 - Microcontroller subsystem
 - FPGA fabric
- Memory storage
 - Flash
 - SRAM
 - PROM
 - Other memories
- System Controller (Crypto)
 - AES, HMAC-SHA-256, ECC
 - PUF, NRBG

Source : Basic Design Configuration Programming by G. Richard Newell, Security Forum, 2012

Outline

- Introduction
- Salient features of Zynq-7000 & SmartFusion2
- Features:
 - Crypto implementations & Key loading
 - Storage & security during operations
 - Product lifecycle
- Key similarities & differences
- Summary

Features based on Crypto implementations & Key loading

Zynq-7000

- Advanced Encryption
 Standard (AES) & Secure
 Hash function-256 (SHA-256)
- RSA algorithm
- Hardware security module
- Keys are loaded by developer
- Hashed key storage

SmartFusion2

- Advanced Encryption Standard (AES) & Secure Hash function-256 (SHA-256)
- Elliptic Curve Cryptography (ECC) & Non-deterministic random number generator (NRBG)
- Hardware security module
- Initially, developer keys, loaded by manufacturer
- Hashed key stored

Features based on Storage & Security during operation SmartFusion2 Zyng-7000

- Unencrypted storage
- Security sensitive codes stored on-chip
- Key storage options:
 - eFUSE (One-time programmable)
 - BBRAM (Volatile)
- Key update

- On-the fly encryption/decryption
- Security sensitive codes stored in encrypted form or at least hash copy on-chip
- Key storage options:
 - Flash memory (non-volatile)
 - BBRAM, eFUSE
- Key update
- Randomization in data encryption

Features based on Product lifecycle

Zyng-7000

- Immutable boot ROM code
- Using sequence number for partitions
 - Anti-tamper measures
 - Lockdown mode
 - PS-PL monitoring

SmartFusion2

- Immutable bootloader code
- Using sequence number for partitions
- Anti-tamper measures
 - Penalty
 - Security mesh, User service Interface (USI)
 - Zeroization
- Certificate revocation list

Outline

- Introduction
- Salient features of Zynq-7000 & SmartFusion2
- Features:
 - Crypto implementations & Key loading
 - Storage & security during operations
 - Product lifecycle
- Key similarities & differences
- Summary

Key similarities

- Similar Cryptographic ciphers (except RSA vs ECC)
- Multistage boot loading
- Initial stage immutable
- Sequence numbers for each partition
- Hashed keys

Key differences

- Zynq-7000 (Z7) supports only decryption vs SmartFusion2 (S2) supports both encryption/decryption
 - S2 supports hardwired NRBG
 - S2 supports modes of operation (ECB, CBC)
- Z7, runs First stage boot loader (FSBL) code vs S2 uses hardwired system controller
- S2 supports in fab installation of user settings vs Zynq has no such facility
- Additional features supported by S2
 - Physical Unclonable function
 - Zeroization, Certificate revocation list

Summary

- SmartFusion2:
 - Elaborated key handling
 - Better implementation of security services
 - Root of trust features
 - Zynq-7000:
 - Simplistic approach
 - Less time to market
- Overall security features
 - SmartFusion2 leads (on the fly encryption & decryption, PUF & other features)

Summary

- Security features essential in modern SoC:
 - On the fly encryption/decryption
 - ECC, AES, SHA, NRBG
 - PUF for device id
 - SRAM-PUF for key generation
 - Hashed keys
 - Partition sequencing
 - Zeroization

SmartFusion2 architecture

Load/Validate Phase-0 Code

Source : Advanced Design Security by G. Richard Newell, Security Forum, 2012

