
A High-Speed Constant-Time Hardware Implementation of NTRUEncrypt
SVES

Kevin Briggs

Abstract— The NTRUEncrypt SVES algorithm, published
as IEEE Standard P1363.1 in 2008, codifies a standardized
form for implementing the NTRUEncrypt lattice-based cryp-
tographic scheme that was first introduced in 1996. Recently,
a high speed constant time implementation was developed in
[FSBG18]. This report covers details relating to the constant
time nature of the implementation and to the data conversion
units used in the design.

I. INTRODUCTION

The advent of quantum computers has brought about a new
fear in the data security and privacy world. These computing
devices are proven to be capable of defeating a multitude of
cryptographic schemes that protect the vast majority of in-
ternet traffic today, in internet protocols such as SSH, IPSec,
and TLS. In these widely used protocols, traditional public
key cryptography such as RSA is commonly employed.
RSA and other commonly used asymmetric cryptography
techniques are reliant on the inability of classical computers
to solve various mathematical problems efficiently. Quantum
computers however break these schemes efficiently, and
therefore the digital arms race has begun to find new schemes
to protect our data moving into the future.

Cryptographic schemes under investigation for the next
generation of data security fall under the category coined
Post-Quantum Cryptography (PQC), and several families of
these schemes exist. One such family is the lattice-based
family, wherein one of the oldest and perhaps most promising
schemes resides - NTRUEncrypt.

II. NTRUENCRYPT

NTRUEncrypt is a scheme first proposed by J. Hoffstein,
J. Pipher, and J. Silverman at Crypto ’96 and later appearing
as [HPS98] that is based on polynomial multiplications over
an integer ring, such as:

R = Z[X]/(XN − 1) (1)

The NTRUEncrypt scheme is afforded security through
a well known hard problem over lattices known as the
shortest vector problem. The shortest vector problem is the
computational challenge of finding the shortest vector in a
lattice that is defined by 2 arbitrary base vectors, which has as
of yet always been a generally difficult problem for classical
computers when dealing with lattices of high dimension
TODO put a ref here.

NTRUEncrypt is notably different from popular classical
schemes in several regards. For one, NTRUEncrypt is an
example of what is known as a probabilistic encryption
scheme. This term refers to a category of schemes wherein

probabilities, i.e. a random element, is involved in the
actual encryption and decryption process and not just key
generation. In the case of the original NTRUEncrypt, this
random element is known in the original literature as φ, or in
the IEEE 1363.1 standard as r, and additionally in the SVES
standard a plaintext mask value is generated randomly.

The probabilistic nature of NTRUEncrypt presents an
interesting challenge in terms of making a constant-time
implementation, which is explored in further detail below.

III. IEEE 1363.1 - NTRUENCRYPT SVES

The first published standard involving the NTRUEncrypt
algorithm was released as IEEE Standard 1363.1. This
standard defines choices for various parameter sizes and
sequences to use when implementing the NTRUEncrypt
SVES algorithm. It is this standard that the implementation
in [FSBG18] conforms to[IEE09]. Several components in
[FSBG18] are the subject of review in this report, namely
a brief overview of how the design fulfills a constant-time
requirement, and how several of the input and output data
conversion units are used to adhere to the GMU CERG
API[FFD+].

A. Parameters

The major parameters in NTRUEncrypt SVES are shown
in figure 1. 2 parameter sets are shown, which are referred to
as ees1499ep1 and ees1087ep1. These refer to the value of
the N parameter, and are 192 and 256 bit equivalent security
levels, respectively.

B. Encryption

The encryption operation is defined as:

e = r ∗ h+m(modq) (2)

The r term is the randomly selected element mentioned
earlier, and is known as the blinding polynomial, while h is
the user’s public key, and m is the user’s message.

C. Decryption

The decryption operation is defined by several steps, which
are:

f ∗ e(modq) (3)

shift to range
[−q/2, q/2)

coefficient reduction mod p



Fig. 1. NTRUEncrypt SVES Parameters

Fig. 2. Encryption Data Flow

IV. CONSTANT-TIME IMPLEMENTATION

As mentioned in section 2, the NTRUEncrypt algorithm is
probabilistic, meaning an element of randomness is present
during the encryption process, and not just key generation
as is the case with some well known classical public key
schemes.

In NTRUEncrypt SVES, this probabilistic element is
found in 2 components - the BPGM, or Blinding Polynomial
Generation Method, and the MGF, or Mask Generation
Function. In the specification, both of these components
effectively fill the role of what is known as an IGF, or

Index Generation Function, which is a function that generates
integer indices of random polynomials. In the case of BPGM,
the randomly generated polynomial is r. In the case of
MGF, the randomly generated polynomial is a plaintext
masking value. The specification states 2 possibilities for
implementing an IGF, which is through either a random bit
generator, or through a deterministic hash function, either
SHA-1 or SHA-256 [IEE09].

In [FSBG18], the selected underlying IGF implementation
is SHA-256, which is realized for both the BPGM and MGF.
Because of the common use of SHA-256, both of these
components are combined into the same functional block
in the design, shown in figure 3.

Fig. 3. BPGM/MGF internal diagram

A. BPGM

As was shown in equation 2, the encryption process
involves multiplying the h polynomial, or public key, with
the r polynomial, which is the blinding polynomial, which
must be generated randomly. The r polynomial is a sparse
polynomial, having specifically only dr indices with coeffi-
cients equal to 1, and another dr indices with coefficients
set to -1, where dr is defined by the parameter set selection.
The BPGM portion of the combined BPGM/MGF unit is
responsible for creating this sparse polynomial.

The BPGM functionality does this by first starting with a
buffer representing the polynomial where all coefficients are
initially set to 0. The internal SHA-256 block is executed,
producing 256-bit output blocks pseudo-randomly from a
seed value. This 256-bit output block is segmented into
8 32-bit blocks and stored in an intermediate FIFO for



consumption by a BWC, or bus width conversion unit. The
BWC1 unit is utilized by BPGM, while the BWC2 unit is
utilized by the MGF functionality.

1) BWC1: The BWC1 (Bus Width Converter 1), shown in
figure 4, is a special component, because it must be able to
operate in real-time as the SHA-256 output blocks become
available, and it must not skip over any data. There are
2 specific facets of this component which cause the total
amount of time required to generate 2 * dr coefficients to
be non-deterministic, which are 1) A threshold check value
and 2) the fact that indices can only be selected once.

Fig. 4. BWC1 Block Diagram

The unit is a variable shifting design which takes as input
32-bit chunks of data from the SHA-256 output FIFO, and
converts these into valid coefficient indices of the r poly-
nomial. A 32-bit chunk is divisioned into 2 16-bit chunks.
Each 16-bit chunk is treated as an unsigned integer, allowing
possible value from 0 to 8191. As per the specification, each
integer which is ≥ cthr must be discarded. For the N=1499
parameter set, cthr = 7495. Once a sample value has passed
the threshold check, it is reduced mod N to be within range
of the desired polynomial, and if not already set to 1 or -1,
the value is accepted and stored in RAM.

2) Constant-Time Solution: Because of the aforemen-
tioned threshold check and the fact that coefficient indices
cannot be generated more than once, and given that indices
are generated pseudo-randomly, then there is no way to
guarantee that a specified number of indices, in this case
2*df, will be generated within a finite number of SHA-256
output blocks. Instead, a reasonable approach which can still
be used to achieve a constant time implementation is to
assume that a number of outputs will be invalid, and to plan
accordingly by preparing to generate a fixed number of SHA-
256 output blocks which is greater that strictly necessary.

In essence, time and thus performance must be traded to
achieve a constant-time implementation given the inherent
probabilistic element.

3) Probability Verification: The remaining question after
resorting to coefficient over-generation is a matter of how
many additional blocks of SHA-256 need to be generated,
and the answer affects the performance of the design. To re-
solve this, the effective probability of generating the required
number of coefficients from a set number of SHA-256 output
blocks was investigated. The primary investigative method
used was simple Monte Carlo simulation through the use of
a C program.

In addition to needing to determine the raw number of
output blocks necessary, another concern with the imple-
mentation is associated with the amount of time that could
potentially be wasted if a given run of the algorithm is
turning out to generate a low number of coefficients, making
the outlook for generating the final required amount very
unlikely. For this reason, a number of checkpoints have been
created where a proportionate amount of coefficients are
needed in order to continue the process. This allows for a
”look-ahead”, to ascertain ahead of time whether the entire
polynomial generation process needs to be restarted.

The probability results for each checkpoint and the final
probability of success, generated using simulation with a C
program, are included in figure 5. These results show that the
likelihood of success is relatively high. It is important to note
that in the event that a single checkpoint fails, or the final
number of coefficients is not realized, the entire polynomial
generation process must be restarted with an entirely new
seed value. Thus the implementation achieves a constant
operation time in the sense that upon a successful run where
the required number of coefficients has been generated, the
operation will have taken a known constant amount of time.

Fig. 5. BWC1 Probability Table

B. MGF

The MGF component is similar to the BPGM. It uses
the internal SHA-256 implementation in a similar manner
to produce coefficients of a masking polynomial. The details
are not explored here, however the concerns are the same as
with the BPGM in that the implementation must accordingly
generate a pre-defined number of output blocks in order
to expect a correct number of coefficients to be generated.
Just as with the BPGM component, the MGF checkpoint



probabilities and total success probability was determined
through simulation. These values are shown in figur x.

Fig. 6. BWC2 Probability Table

V. PQC HARDWARE API
As the race to produce the most secure and most efficient

PQC algorithms takes off, the importance of having well
defined APIs is paramount, as without them, inter-operability
and therefore rate of adoption will be affected in a time when
it may not be afforded. To this end, the implementation in
[FSBG18] strives to be compliant with the recently proposed
GMU CERG PQC Hardware API[FFD+]. This API defines
a number of minimum compliance criteria, including:

• Key generation details
• Padding and acceptable message sizes
• Timing characteristics
• External memory constraints
• Interface ports
The relevant encryption and decryption elements are

shown in figures 7 and 8.

Fig. 7. PQC API - Encryption Data Elements

VI. DATA CONVERSION UNITS

The data conversion units are responsible for conforming
to the PQC API input and output specifications, and moving
and reformatting different types of data as necessary to
respective internal components in a format that is most easily
used during the processes in which they are needed. There
are 5 different data conversion units, of which 3 are input
units and 2 are output units. Both a single input and output
unit are dedicated to both encryption and decryption, while
a 5th unit is used during both encryption and decryption.

Fig. 8. PQC API - Decryption Data Elements

A. IDCU-E

The input data conversion unit - encryption. This com-
ponent is responsible for leading the message, m, into an
internal RAM block over the pdi data bus. It also loads a
random seed value, b, into RAM over the rdi data bus.

This unit is a simple pass-through of the pdi data bus to
the message output signal to RAM, as well as a pass-through
of rdi data to the b output to RAM. It additionally includes
an internal register for saving the octL value to present to
the global controller.

B. IDCU-ED

The input data conversion unit - encryption/decryption.
This component is responsible for loading the public key,
h, into an internal SIPO component inside the polynomial
multiplier, and another chunk of data, hTrunc, into RAM.

Fig. 9. IDCU-ED

This unit uses a simple SIPO to PISO interconnect to
convert between incoming 11 bit coefficient values and the
output 32-bit bus width. It also uses another SIPO for storing
coefficient values to feed into the polynomial multiplier, 2
coefficients at a time.



C. IDCU-D

The input data conversion - decryption. This component
is the simplest, and reads in indices of non-zero coefficients
in the private key polynomial, f, over the sdi data bus. Each
coefficient comes in 11 bits at a time, thus its functionality
is merely a truncation of the incoming bits.

D. ODCU-E

The output data conversion unit - encryption. This com-
ponent is responsible for formatting and outputting the
encrypted ciphertext over the pdo data bus. Internally, it uses
a PISO to convert from a 704 bit ciphertext chunk into 11
bit output pieces.

E. ODCU-D

The output data conversion unit - decryption. This com-
ponent is responsible for formatting and outputting the
decrypted message over the pdo data bus. It uses a PISO
internally to accept 96-bit chunks of the output message,
cm, and conver them to 32-bit output chunks.

REFERENCES

[FFD+] Ahmed Ferozpuri, Farnoud Farahmand, Viet Dang,
Malik Umar Sharif, Jens-Peter Kaps, and Kris Gaj.
Hardware api for post-quantum public key cryptosystems.
https://cryptography.gmu.edu/athena/PQC/PQC HW API.pdf.

[FSBG18] Farnoud Farahmand, Malik Umar Sharif, Kevin Briggs, and Kris
Gaj. A high-speed constant-time hardware implementation of
ntruencrypt sves. In 2018 International Conference on Field
Programmable Technology (ICFPT), December 2018.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru:
A ring-based public key cryptosystem. In Joe P. Buhler, editor,
Algorithmic Number Theory, pages 267–288, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg.

[IEE09] IEEE. Ieee standard specification for public key cryptographic
techniques based on hard problems over lattices. IEEE Std
1363.1-2008, pages C1–69, March 2009.




