ECE 421

Classical Systems and Control Theory
Fall 2003

 

You can download a .pdf version of the course syllabus.


Class Time: Tuesday and Thursday, 3:00 - 4:15 p.m., Robinson, 
Room B-111, Dr. Beale

Graduate Teaching Assistant: Zain Shahid
         Office Hours:

Prerequisites: Grade of C or better in ECE 360/220 or POI

Text: Modern Control Engineering, 4th Edition, K. Ogata, Prentice Hall, 2002, Chapters 1, 3, 5 - 9

Office Hours: 

Monday, December 15: 9:00 - 11:00 a.m. and 1:00 - 4:00 p.m.

Tuesday, December 16:  9:00 a.m. - 1:00 p.m

Homework Assignments

Examples

Design Project

Bibliography

Objectives

Grading

Important Dates

Course Outline

Objectives:

Learn the purposes, advantages and disadvantages, terminology, and configurations of feedback control systems.
Learn ways of classifying, measuring, and analyzing the stability and performance properties of feedback control systems.
Learn various classical frequency domain and time domain techniques for designing compensators in order to improve performance in feedback systems.

Prerequisites by topic:

Knowledge of Fourier and Laplace transforms.
Ability to develop transfer functions for linear electrical circuits.
Knowledge of relationship between system poles and time- domain performance.
Knowledge of the concept of system frequency response.

Course Requirements:

Important Dates:

Test 1 -- Thursday, September 18 -- Chapters 1, 3 (Sections 3.1 and 3.3), and 5 (Sections 5.1. 5.2, 5.3)
Test 2 -- Thursday, October 23 -- Chapters 5 (Sections 5.7 and 5.9) and 6
Final Exam -- Tuesday, December 16, 1:30 - 4:15 p.m. -- Comprehensive, with Chapters 7, 8, 9 emphasized
Last day to drop classes without Dean's permission -- Friday, September 26.
No classes on Tuesday, October 14, due to Columbus Day Break!!!

Course Outline:

Chapter 1 -- Introduction, what control systems are, types of control systems, examples of control systems, what feedback is and why it is used - 1-1/2 class periods.

Chapter 3 -- Block diagrams and their manipulation - 1-1/2 class periods.

Chapter 5 -- Transient analysis for systems, model and characteristics of first-order systems, model and characteristics of second-order systems, effects of control actions on system performance, stability analysis with the Routh array, steady-state errors in systems - 7 class periods.

Chapter 6 -- Closed-loop poles and their movement, concept of the root locus magnitude and phase criteria, constructing the root locus plot, properties of the root locus - 3 class periods.

Chapter 7 -- Specifications for control systems, designing compensators using the root locus, phase lag and phase lead compensators, lag-lead compensation - 4 class periods.

Chapter 8 -- Frequency response analysis, polar plots and the Nyquist stability criterion,  review of Bode plots, gain and phase margins - 4 class periods.

Chapter 9 -- Specifications for control systems, designing compensators in the frequency domain, phase lag and phase lead compensators, lag-lead compensation - 4 class periods.

Click the icon to return to the Dr. Beale's home page

Lastest revision on Wednesday, June 7, 2006 11:41 AM