An Implementation Comparison of an IDEA Encryption Cryptosystem on Two General-Purpose Reconfigurable Computers

Allen Michalski¹, Kris Gaj¹, Tarek El-Ghazawi²

¹ ECE Department, George Mason University ² ECE Department, The George Washington University

What is a Reconfigurable Computer?

Microprocessor system

Reconfigurable processor system

Characteristic Features

- ✓ composed of traditional microprocessors and FPGAs
- ✓ programming does not require knowledge of hardware design
- ✓ permit run-time reconfiguration of FPGAs

Examples:

SRC-6E

Starbridge HC-36

SRC and Star Bridge Systems

SRC Hardware Architecture

SRC Compilation Process

SRC Programming Model

Program in C or Fortran

Function_2(d, e, f)

Macro_3(s, t)

Macro_1(n, b)

Macro_4(t, k)

FPGA contents after the Function_1 call

Star Bridge Hardware Architecture

Star Bridge Processing Element (PE)

Star Bridge Compilation Process

SRC vs. Star Bridge Design Entry

High-Throughput Secret-Key Encryption with IDEA

IDEA

- International Data Encryption Algorithm, published in 1990
- Conventional encryption algorithm suggested to replace DES
 - Largest use in PGP
- Block cipher
 - 128 bit key
 - 64 bit data block
 - 8 ½ rounds

IDEA – Three Basic Operations

$$Y = X + K \mod 2^{16}$$

$$Y = X \cdot K \mod (2^{16}+1)$$

where 0 represents 2¹⁶

Fully Pipelined Architecture of IDEA

8.5 rounds

14 pipeline stages/round

- 116 pipeline stages
- New input & new output every clock cycle

High-Throughput Encryption

. . . .

High-Throughput Secret-Key Encryption in SRC

Data Flow During Encryption

IDEA Encryption

MB 10 MB 15 MB 20 MB

Amount Data Processed

Problems

- Execution time dominated by
 - Configuration of the MAP FPGA and
 - Data transfer between the System Common Memory and On-Board-Memory

- Preloading the configuration before execution
- Flip-flopping FPGAs during reconfiguration

Comparison of SRC MAP vs. Pentium 4

Data Processed	5MB	10MB	15MB	20MB
SRC (sec)	0.08	0.17	0.25	0.33
Pentium 4 (sec)	7.99	15.96	23.94	31.93
SRC Speed-up	95.60	95.16	96.27	96.53

Pentium 4 implementation based on the Crypto++ 5.0 library

IDEA in VIVA

Star Bridge Results

- Hardware interface and software support for efficient data transfer still under development
- Unable to measure end-to-end time without file i/o, data transfer in time, or data transfer out time
- MAP FPGA Processing Time the same as on the SRC machine

Results Comparison

IDEA – Compilation Time

SRC

Synthesis2 min

Mapping4 min

Placing and Routing
 1 hr 34 min

Star Bridge

Viva compilation time ~36 hrs

Mapping14 min

Placing and Routing
 1 hr 25 min

IDEA Use of FPGA Resources Xilinx XC2V6000

IDEA – Timing

- FPGA Processing Time the same in both systems
 - The same number of clock cycles
 - The same maximum clock frequency 100 MHz
- The End-to-End time much smaller in SRC, but the exact comparison impossible because of the early development stage of the Star Bridge hardware and software

Conclusions

- Both platforms are unique expansions of existing paradigms
- FPGA data transfer is a significant bottleneck for I/O intensive applications, such as encryption
- SRC hardware and software more advanced
 Star Bridge system still in early development state
- Two order-of-magnitude speedup versus softwareonly solution for the high-speed IDEA encryption on SRC