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Abstract: The efficient design of digit-serial multipliers for special binary composite fields, F2nm
where gcd(n, m) ¼ 1, is presented. These composite fields can be constructed via an irreducible
pentanomial of degree nm but not an irreducible trinomial of degree nm. The conventional con-
struction method for such digit-serial multipliers is to exploit the simplicity of pentanomials to
obtain efficent linear feedback shift registers together with AND–XOR arrays. In this approach,
these binary fields are constructed via irreducible trinomials of degree m with respect to F2n
which in turn are also constructed via an irreducible trinomial (Hybrid I) or pentanomial
(Hybrid II) over F2. The bit-serial structure to the tower field and applying the bit-parallel structure
to the ground field are applied to obtain the hybrid architecture. Three kinds of multipliers (conven-
tional, Hybrid I and Hybrid II) are implemented using the same FPGA device. Since at least one
level is constructed via a trinomial instead of a pentanomial, the hybrid multipliers are 10–33%
more efficient than the conventional ones according to the post-place-and-route-timing analysis
via Xilinx-ISE 7.1.

1 Introduction

In recent years, finite-field arithmetic has been attracting an
increased attention of researchers because of its extensive
applications in error correction or cryptographic algorithms
adopted in the Internet and wireless communication
systems. Especially, finite-field multiplication always
plays a central role in directly determining the efficiency
of public key schemes, such as elliptic curve cryptosystems
(ECC). Therefore it is imperative to design the multipliers
with high efficiency.
Our approach focuses on the digit-serial multipliers over

the binary composite fields F2nm with polynomial basis rep-
resentation. It is well-known that composite fields, namely
F2nm , yield efficient implementations if the basis is chosen
wisely. They can be constructed via low Hamming weight
irreducible polynomials of degree nm, such as trinomials
or pentanomials, so that the field elements can be rep-
resented via the corresponding polynomial basis over F2.
Alternatively, it can be constructed via a trinomial or penta-
nomial of degree m, and the field elements can be rep-
resented via its corresponding polynomial basis over the
ground field F2n , which in turn can also be constructed by
a simple irreducible polynomial of degree n. One can
derive either the traditional digit-serial multiplier with
digit size n according to the first method or the composite
field multiplier according to the second one [1].

FPGA technology provides the designers with more flexi-
bility and manoeuvrability at the bit level, particularly suit-
able for the applications with wide operand sizes. For
efficient FPGA implementation of the binary field multi-
plier, the designer not only needs to consider the circuit
complexity in terms of gate count but also needs to consider
other issues such as wire density and regularity of circuit
structure. There have been several published literature
sources discussing the circuit complexity and latency of
both multipliers from the point of view of ASICs [1–5],
whereas we are the first to compare these two architectures
in terms of FPGA implementations. We derive tables for
selected composite field F2nm which can be constructed via
a pentanomial of degree nm but not a trinomial. However,
for these composite degrees, there exist at least one irredu-
cible trinomial for either F2m or F2n . Accordingly, we
implement both conventional multipliers and hybrid multi-
pliers for these composite fields listed in the tables. Both
designs are ported to the FPGA device, Xilinx xc2v1000-
5-ff896 for comparisons in terms of timing and area.
Section 2 briefly reviews the structure of the binary com-

posite fields and the construction method. Section 3 intro-
duces both the traditional digit-serial multiplier and the
composite field multiplier. Section 4 focuses on the FPGA
implementations for both designs. Comparisons of perform-
ance and cost are demonstrated. Finally, conclusions are
given in Section 5.

2 Mathematical background

We first introduce some notations in Fig. 1. Let a denote the
generator of the polynomial basis of F2nm with respect to F2.
Let b denote the generator of the polynomial basis of F2n
with respect to F2. And let g denote the generator of the
polynomial basis of F2m with respect to F2.
There always exist irreducible trinomials or pentanomials

for the field size n ! 10 000 which can be exploited to
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construct the binary fields with respect to F2 [6]. In our
approach, we assume that a is the root of an irreducible pen-
tanomial of degree nm. The conventional representation is
to use the standard basis constructed by a, namely
Bs ¼ {1,a,a2, . . . ,anm#1}.
For the composite field F2nm where gcd(n, m) ¼ 1, the

field elements can be represented in a different way. Let b
and g are the roots of irreducible trinomials or pentanomials
of degree of n and m separately, then g can be raised up to
generate the polynomial basis, namely Bt ¼ {1, g,g2, . . . ,
gm#1}, for the tower field F(2n)m with respect to F2n . b can
be used to construct the polynomial basis, namely
Bg ¼ {1, b, b2, . . . , bn#1} for the ground field F2n with
respect to F2. The proof of this theorem can be found in
[7]. For instance, the elements of F22$5 can be represented
via Bs generated by a, where a is the root of fs(x) ¼ x10þ
x4 þ x3 þ xþ 1. Alternatively, the field elements can be
represented via Bt generated by g and Bg generated by b,
where g is the root of ft(x) ¼ x2 þ xþ 1 and b is the root
of fg(x) ¼ x5 þ x2 þ 1. Then g and b can be representedvia
a (up to conjugates) as g ¼ a9 þ a6þ a5 þ a4 þ a3 þ a2

and b ¼ a6 þ a4 þ a3 þ a2.
For some degrees nm, pentanomials are the lowest

Hamming weight irreducible polynomials to construct
F2nm . However, it is still possible to obtain a more efficient
digit-serial multiplier by adopting the second representation
because there may exist at least one irreducible trinomial
of degree n or m. In Table 1, we list generating pentano-
mials fs(x) for large fields and generating trinomials ft(x)
and fg(x) for both tower fields and ground fields. In
Table 2, the generating polynomial for F2n is a pentanomial.
The composite exponents are bounded by 80 ! nm ! 300
because of the requirements of operand sizes for crypto-
graphic applications. These tables are organised as
follows: a trinomial xn þ xk þ 1, with n . k . 0 is rep-
resented by the pair n, k. A pentanomial
xn þ xk3 þ xk2 þ xk1 þ 1, with n . k3 . k2 . k1 . 0, is rep-
resented by the quadruple n, k3, k2, k1 [6]. For example, the
field F2205 has no trinomial basis and a pentanomial basis can
be used in this case. The simplest pentanomial basis is gen-
erated by the roots of x205 þ x9 þ x5 þ x2 þ 1. However,
since 205 ¼ 5 . 41 and trinomial basis exists for both
fields, F25 and F241 , we may realise efficient field arithmetic
using the trinomial bases. In case 80 ! nm ! 300, there
exists approximately 30 composite fields which can be con-
structed in the first way and approximately 34 ones which
can be constructed in the second way.

3 Conventional and hybrid multipliers

Bit-parallel multiplier which can complete one multipli-
cation in one clock cycle can achieve high operation
speed. However, it is not suitable to adopt it directly in
the public key cryptosystem such as ECC because of its
large circuit complexity in case of large operand sizes.
Bit-serial multiplier with an iterative structure sacrifices
the operation speed to gain efficiency in terms of area. By
combining both structures, we can derive the digit-serial
hybrid multiplier for some composite fields as claimed pre-
viously [1], that is the bit-serial structure can be applied to
the tower field and the bit-parallel structure can be applied
to the ground field. On the other hand, we can also derive
the digit-serial multiplier using the conventional polynomial
basis representation [8–12]. We analyse these two different
architectures using concrete examples.

3.1 Conventional digit-serial multiplier

The standard polynomial basis generated by a, Bs (Fig. 1),
can be used to represent the elements belonging to F2nm .
a can be usually chosen as the root of an irreducible tri-
nomial or pentanomial of degree nm. In our approach
(Tables 1 and 2), a is the root of an irreducible pentanomial,
that is

fs(a) ¼ anm þ ak3 þ ak2 þ ak1 þ 1 ¼ 0 (1)

Therefore the standard technique for reduction, replacing
anm with ak3 þ ak2 þ ak1 þ 1, can be exploited to decrease
the circuit complexity.
We use the left-to-right multiplication algorithm to

develop the most significant digit-serial multiplier where
the digit size is n. In Fig. 2, the two operands a and b and
the product c can be represented as follows

a ¼
Xnm#1

i¼0

aia
i, b ¼

Xnm#1

i¼0

bia
i, c ¼

Xnm#1

i¼0

cia
i (2)

where ai, bi and ci [ F2.
AND–XOR arrays are adopted to perform the compu-

tations of Steps 3–7 in Fig. 2 in parallel. There are two
ways to develop such AND–XOR arrays. The first one is
to skip the modular operation for each dj and keep the

Table 1: Selected pentanomials for large fields and
trinomials for both tower fields and ground fields

fs(x) of degree nm ft(x) of degree m fg(x) of degree n

82, 8, 3, 1 2, 1 41, 3

164, 10, 8, 7 4, 1

205, 9, 5, 2 5, 2

246, 11, 2, 1 6, 1

Fig. 1 Composite field structure

Table 2: Selected pentanomials for large fields,
trinomials for tower fields and pentanomials for ground
fields

fs(x) of degree nm ft(x) of degree m fg(x) of degree n

96, 10, 9, 6 3, 1 32, 7, 3, 2

160, 5, 3, 2 5, 2

224, 9, 8, 3 7, 1

288, 11, 10, 1 9, 1

Fig. 2 Digit-serial left-to-right multiplication
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partial sum as nþm bits and perform the modular operation
only once finally. The second one is to perform modular
operations for each dj so that the partial sum are kept as
m bits instead of nþm. Even though more XOR gates are
used, the wire density is decreased which is better for
those applications with large operand size. We adopt the
second structure. The linear feedback shift register
(LFSR) structure is derived from Step 8.
For convenience of understanding, we provide a concrete

example which will be also used in the derivation of the
hybrid digit-serial multiplier. We choose n ¼ 5, m ¼ 9
and the generating polynomial of F245 , fs(x) ¼ x45þ
x4 þ x3 þ xþ 1, by which the element, a [ F245 , can be
represented as a ¼

P44
i¼0 aia

i, where ai [ F2 and a is the
root of the irreducible polynomial fs(x). Then we have (3),
which can be used to derive the AND–XOR arrays as
well as the LFSR structure for reduction.

a45 ¼ a4 þ a3 þ aþ 1 a46 ¼ a5 þ a4 þ a2 þ a
a47 ¼ a6 þ a5 þ a3 þ a2 a48 ¼ a7 þ a6 þ a4 þ a3

a49 ¼ a8 þ a7 þ a5 þ a4

(3)

The architecture is described in Fig. 3 where & denotes
XOR gate arrays, and ' denotes AND gate arrays.

3.2 Hybrid digit-serial multiplier

According to the theorem claimed in Section 2, we can
develop a hybrid digit-serial multiplier by applying the bit-
serial structure to the tower field and applying the bit-
parallel structure to the ground field. In this paper, the
tower field is constructed via an irreducible trinomial and
the ground field is constructed via an irreducible trinomial
or pentnomial. We will illustrate the derivation via the
same example used in Section 3.1.

The two operands a and b and the product c in F2nm can be
represented as

a ¼
Xm#1

i¼0

aig
i, b ¼

Xm#1

i¼0

big
i, c ¼

Xm#1

i¼0

cig
i (4)

where ai, bi and ci F2
n. And these coefficients can be

represented as

ai ¼
Xn#1

j¼0

aijb
j, bi ¼

Xn#1

j¼0

bijb
j, ci ¼

Xn#1

j¼0

cijb
j (5)

where aij, bij and cij [ F2. In our example,m ¼ 9 and n ¼ 5.

3.2.1 Derivation of the bit-serial structure: The gener-
ating polynomial for the tower field is chosen as

ft(x) ¼ x9 þ xþ 1, g9 þ gþ 1 ¼ 0 (6)

According to this trinomial together with Fig. 2, we can
derive the bit-serial structure for the tower field shown in
Fig. 4 where & denotes the adder over F25 , that is five
bitwise XORs, and ( denotes the bit-parallel multiplier
over F25 . The modifications of Fig. 2 we need to consider
are as follows. The coefficients of a, b and c locate in F2n
instead of F2. The generating polynomial is ft(x) instead
of fs(x), and the digit size is 1 instead of n.

3.2.2 Derivation of the bit-parallel structure: The
generating polynomial for the ground field are chosen as

fg(x) ¼ x5 þ x2 þ 1, b5 þ b2 þ 1 ¼ 0 (7)

Let a, b and c ¼ a . b denote the elements in F2n with the
polynomial basis generated by b.
Let as, bt and dj denote the coefficients in F2 accordingly

where 0 ! s, t ! 4 and 0 ! j ! 8. By Mastrovito’s method
[13, 14]

c ¼
X8

j¼0

djb
j dj ¼

Xsþt¼j

0!s,t!4

asbt (8)

where dj [ F2. By (7)

b5 ¼ b2 þ 1 b6 ¼ b3 þ b
b7 ¼ b4 þ b2 b8 ¼ b3 þ b2 þ 1

(9)

Fig. 3 Conventional digit-serial multiplier over F245, n ¼ 5

Fig. 4 Bit-serial structure over F(25)9 constructed via ft(x) Fig. 5 Bit-parallel structure over F25 constructed via fg(x)
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Then we can get the coefficients cj as follows.

c4 ¼ d7 þ d4 c3 ¼ d8 þ d6 þ d3
c2 ¼ d8 þ d7 þ d5 þ d2 c1 ¼ d6 þ d1
c0 ¼ d8 þ d5 þ d0

(10)

The bit-parallel multiplier over F25 is shown in Fig. 5, where
o. denotes AND gate and & denotes XOR gate. More
details can also be found in [2, 4].
Next we provide the derivations of the general pentano-

mial bit-parallel multiplier considering that it is the most
complicated case for our hybrid multipliers. Suppose that
the partial product d ¼

P2n#1
i¼0 djb

i has been computed via
Mastrovito’s method. Then we need to perform reductions
for those degrees i ) n. If i# nþ k3 , n then we have

bi ¼ bi#nbn ¼ bi#n(bk3 þ bk2 þ bk1 þ 1)

¼ bi#nþk3 þ bi#nþk2 þ bi#nþk1 þ bi#n (11)

If i# nþ k2 , n ! i# nþ k3 then two reductions are
necessary.

bi ¼ bi#2nþ2k3 þ bi#2nþk3þk2 þ bi#2nþk3þk1

þ bi#2nþk3 þ bi#nþk2 þ bi#nþk1 þ bi#n (12)

If i# nþ k1 , n ! i# nþ k2 then one more reduction is
needed.

bi ¼ bi#2nþ2k3 þ bi#2nþk3þk1 þ bi#2nþk3 þ bi#2nþ2k2

þ bi#2nþk2þk1 þ bi#2nþk2 þ bi#nþk1 þ bi#n (13)

Similarly, if n ! i# nþ k1 then totally four reductions are
necessary.

bi ¼ bi#2nþ2k3 þ bi#2nþk3 þ bi#2nþ2k2 þ bi#2nþk2

þ bi#2nþ2k1 þ bi#2nþk1 þ bi#n (14)

Since k3 , n=2, at most four reductions are needed. On the
basis of the above equations, we can derive the bit-parallel
pentanomial multiplier. The same method can be also
applied to the bit-parallel trinomial multiplier.

3.3 Complexity analysis for both architectures

We declare some notations used in the following analysis.
TA denotes the delay of a two-input AND gate and TX
denotes the delay of a two-input XOR gate. The complexity
comparisons in terms of ASIC estimation are summarised in
Table 3, where Hybrid I denotes the hybrid multiplier in
which the ground field is constructed via a trinomial and
Hybrid II denotes the one in which the ground field is con-
structed via a pentanomial.

Table 3: Summary of complexity results

Architecture No. of AND No. of XOR Critical path length

Conventional mn2 mn2þ 2n2þ 2n TAþ (1þ dlog2(2nþ 1)e)TX

Hybrid I mn2 mn2þmnþ n2m TAþ (dlog2(nþ 2)e)TX

Hybrid II mn2 mn2þ 3mnþ n2 3m TAþ (4þ dlog2ne)TX

Table 4: Performance and cost comparisons between conventional and hybrid I multipliers

Architecture nm No. of FF No. of LUT No. of CLB slices Clock period, ns Latency, ns

Conventional 82 831 3311 1992 7.162 14.32

164 2065 6307 3630 7.666 30.66

205 2605 7987 4630 8.275 41.38

246 3227 9594 5162 9.357 56.14

Hybrid I 82 594 2963 1885 6.837 13.67

164 1438 5681 3339 6.998 27.99

205 1686 7101 3916 7.329 36.65

246 2424 8669 4434 8.695 52.17

Table 5: Performance and cost comparisons between conventional and hybrid II multipliers

Architecture nm No. of FF No. of LUT No. of CLB slices Clock period, ns Latency, ns

Conventional 96 1026 2994 1776 7.354 22.06

160 1701 4833 2895 7.425 37.13

224 2382 7155 4155 7.631 53.42

288 3058 8686 5001 10.787 97.08

Hybrid II 96 880 2757 1649 7.218 21.65

160 1289 4541 2470 6.997 34.99

224 1879 6335 3430 7.182 50.27

288 2384 8016 4276 9.992 89.93
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For the conventional architecture, the total number of
two-input AND gates is mn2 (n is the digit size) and the
number of two-input XOR gates is determined by three
parts, feedback network, modular components for aib and
the partial sum in Step 8 of Fig. 2. For Hybrid I, a bit-
parallel multiplier in F2n over F2 can be built with at most
n2 AND gates and n22 1 XOR gates [2]. For Hybrid II, a
bit-parallel multiplier can be built with at most n2 AND
gates and n2þ 2n2 3 XOR gates [5]. The hybrid multiplier
contains m bit-parallel multipliers and together with
(mþ 1)n XOR gates considering that the tower field is con-
structed via an irreducible trinomial in our approach.
The difference in terms of latency between the conven-

tional and hybrid architectures is not huge. If m * n, the
hybrid architecture is more efficient in terms of area. The
wire density due to the feedback network in the hybrid mul-
tipliers is decreased. Additionally, more regularity can be
gained in the hybrid multipliers since the bit-parallel com-
ponent has the same structure.

4 FPGA implementations

We choose parameters according to Tables 1 and 2 for our
experiments. All multipliers are implemented using a Xilinx
xc2v1000-5-ff896 which contains 15 360 slice flip flops,
15 360 4-input look-up tables (LUTs) and 7680 configur-
able logic blocks (CLBs). Both synthesis, and place and
route are completed via Xilinx-ISE 7.1.

The performance comparisons of the FPGA implemen-
tation results after placing and routing are summarised in
Tables 4 and 5. Comparisons of latency by area are
shown in Figs. 6 and 7. The optimisation goal for synthesis
is speed instead of area so that the registers are replicated by
three times on average to shorten the critical path for both
architectures. However, we find that fewer registers are
used in the hybrid multipliers than in the conventional
ones. This is because that the hybrid one is more regular
and the wire density in feedback networks is decreased. In
Figs. 6 and 7, we can see that the hybrid multipliers are
10–33% more efficient than the conventional ones in
terms of the product of latency by area.

5 Conclusions

Efficient realisation of digit-serial multipliers for binary
fields is important to applications such as cryptography and
coding theory. It has been claimed that the property of com-
posite fields F2nm can be used to derive more efficient multi-
pliers; however, to date there has been very little empirical
evidence, in particular for FPGA implementations to
support this view. In our approach, we concentrate on those
composite fields which can be constructed via a pentanomial
of degree nm but not a trinomial of degree nm, and in which
the tower field is constructed via a trinomial of degree m and
the ground field is constructed via either a trinomial or a pen-
tanomial of degree n. We investigate both conventional and
hybrid digit-serial multipliers for these special binary com-
posite fields. In case that m * n, the hybrid multiplier is
more efficient than the conventional one in term of gate
count. Furthermore, both architectures are implemented
using the same FPGA devices. Fewer registers are replicated
for shortening the critical path in the hybridmultiplier than in
the conventional one because the hybrid architecture is more
regular and its wire density in the feedback network is
decreased considerably. The hybrid multipliers are generally
10–33% more efficient in terms of the product of latency by
area than the conventional ones. Therefore we can conclude
that for such special binary composite fields, the hybrid archi-
tecture is more efficient in terms of area, regularity and wire
density, which make it more suitable for FPGA realisations
compared with the conventional architecture.
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